
It is my hope that this short document outlining a method of
DSDT construction is both entertaining and instructional.

While I strive for perfection, a character flaw for sure, alas it
is not attainable so please drop me a note for corrections or
suggestions for improvement.

I have written this down but it is not really my own. So many
intelligent, patient and definitely obsessive individuals have
gone before dropping tidbits here and there, writing code and
applications, researching devices, motherboards, kernel
extensions and the rest to make this document possible that
I simply can take no credit for it.

Most of what we do to make our machines function near-
normal is the hard work of countless individuals and while it
may seem less than enough, I would like to say 'Thank You'.

You guys rock!

So you want t constuct your own DSDT
(Differentiated System Description Table)

This is the opening dialog of
the DSDTSE application. The
button toward the bottom says
'Extract DSDT'; press it once
to open the window shown on
the next page.

REMOVE ANY DSDT from your boot sequence; this can be accomplished on a temporary
basis by adding DSDT=/Extra/xxxx.aml to your boot string.

Boot into Windows. If your Bios needs it, update it now; as of this writing the A12 Bios is
current for the XPS L702x. Once the update is complete, boot into the Mac OS overriding
your DSDT if you have one specified in the com.apple.Boot.plist file; if you do not
prevent the old DSDT from loading, it will overwrite your newly installed Bios update and
the updates will be lost to your Mac OS (should this occur, boot into Windows and then
back into the Mac OS).

Run /Developer/Applications/Utilities/IORegistryExplorer and save to your desktop.
Download DSDTSE: http://www.osx86.es/?p=610
Download P4V Client (Macintosh): http://www.perforce.com/downloads/complete_list
Download iASLME (compiler): http://cvad-mac.narod2.ru/iaslme/

Start the DSDTSE application.

http://www.osx86.es/?p=610
http://www.perforce.com/downloads/complete_list
http://cvad-mac.narod2.ru/iaslme/

Press the window <CLOSE> button, press <SAVE>, override the default output location
to Desktop and override the default file name to dsdt_vanilla_Ann where Ann is your
Bios level (A10, A12 or whatever).

The next two pages show the iASLME compiler dialog window (3 views) and the
Finder window showing the compiler's output Sessions folder.

Start the iASLME application; drop your vanilla DSDT from the desktop onto the
DOCK ICON of the compiler to get an initial result. There should now be a Sessions
folder on your desktop; copy your vanilla DSDT source into the subfolder (date/time) of
the Sessions folder containing the dsdt_vanilla_Ann.aml file so you have a record of
source and output for every version built. If necessary, you can always rebuild the source
(.dsl) from the binary (.aml) using DSDTSE.

The first iASLME window shown below is the result from the compilation; note it shows
1 error.

The second window is the same dialog scrolled back to the beginning showing some stats
about the machine's environment as well as the current boot's kernel flags. This is one
place that we can verify we have successfully overridden the DSDT; note it says
DSDT=/Extra/xxxx.aml was a kernel flag so our override is in effect.

The third window is scrolled back toward the bottom and shows the 1 error's messages.

Using p4merge, open your vanilla DSDT and my A12 out of the Steve's Update and
observe the differences. There maybe several hundred; relax ... all but about 10 of those
are cosmetic and we won't be doing anything with them.

NOTE: You are opening these files for potential edit; if your intent is to actually modify
them, I would copy the originals first and open the copies. If you accidentally modify
your original source, you can introduce some very difficult-to-find errors.

Once open, note that p4merge indicates how many differences there are (upper left) and
displays two windows with the differences high-lighted; the left window is represented by
a bluish-purple triangle and the right window is represented by a green circle. There is a
row of icons at the top of the screen; five from the right is the search icon. Move focus to
the window you wish to search, press the search icon, enter the search term and press
'Next' or 'Previous' to locate. An unfortunate anomaly removes the window indicator
while actually searching so you must remove focus from the search window to see which
window was searched; I move the search window so I don't lose it behind the editor
window.

In the side-by-side editor display, note the differences are highlighted. This high-lighting
has two-levels; the first high-lights both the line that is different and the actual difference
in that line; the second just high-lights the line. To modify this setting, press the icon
second from the right.

The comments at the top of the code itself are informational, placed there by the
disassembly process, and need no modification.

The next screen, shown below, has been advanced to the line number of our compiler
error. In this case, unused arguments have been left in the code; this compiler will ignore
them. However, as zero errors are better than one (can help to avoid confusion later), just
comment them out. Commenting is often better than removing; you just never know.

To edit the source displayed in the left window, press the icon third from the left, a bluish-
purple triangle with a pencil.

A third display opens to show the results of any actions taken; before we start editing,
let's examine a couple of things. First, note that in the third display, the left hand bar
shows all differences in this comparison indicated by the dash-line; to move quickly, we
can grab the white current-line indicator and use it as a gross positioning to the next
difference. Note also that each difference has a triangle and a circle on the right; those
give us the option of including or excluding the difference(s) of the indicated source into
the copy being edited.

This is the first difference we need to include in our new DSDT. The DGTP method is
the 'injector' for the _DSM methods which we are going to add to our DSDT to enable
the MAC OS to recognize our devices. Every DSDT must have this as it is referenced in
a number of modifications; it can be most anywhere as long as you don't change the
'scope'. I have placed it first, many others place it last in the DSDT; physical position in
the source does not matter, 'scope' does.

Methods? Scope? For this limited discussion, let's think of 'methods' as boxes and
'scope' as a location; a shelf in a particular closet. E.G.: The HDEF method is in a box
on shelf PCI0 in closet _SB so /_SB.PCI0 is the scope (location) of the box HDEF. If
we were to place the DTGP box there, other methods on other shelves and/or in other
closets would not have access as they would not know where to look. As you go
through the DSDT, you will recognize many boxes of the same name. 'Scope' makes
them different by pointing to their location; by pointing to the shelf they're on and the
closet they're in.

OK, we have exhausted my 'extensive' knowledge of this so it is time to move on. Just
do not change the scope; got it? Besides, if you do, you'll know soon enough.

The following three images demonstrate how a little research can help you weed out
unnecessary changes. Making and/or leaving unnecessary DSDT modifications in the
source not only makes future modifications more difficult but it can also lead to obscure,
intermittent errors and/or flakey device operation.

The first image indicates a change that might need to be made in order to support the
LPCB device for the XPS L702x. This change was introduced from the DSDT used by
the doomed L701x which died on day 20 of Dell's 21-day return policy. The change to
prompt the MAC OS to support this device consists of injecting a Property named
device-id with a value of 0x00001c4b (Data <4b 1c 00 00>) into the LPCB box on the
PCI0 shelf in the _SB closet.

OK, so technically the LPCB is a device not a method; let's just go ahead and think of
devices as somewhat bigger boxes in which one or more smaller method boxes are
occasionally kept ...

Anyway, in the second (and third) image, we are checking the IORegistryExplorer
output which was previously saved (I know you did not skip this step, right? Well good
for you!) and it indicates that the LPCB device is currently being recognized by the
MAC OS and that the Property which we are injecting, device-id, is already present.
As this device is already supported, we should not choose this modification.

I must admit here that this change is still in the DSDT's I have previously posted. I
simply hadn't taken the time to check until now; sigh. Oh well, better late than never …

The third image simply demonstrates a way to get to the information we need without
paging through a lot of unneeded stuff trying to find the LPCB device. Just type the
term for which you are looking into the IORegistryExplorer Search box and you get a
clean result with unwanted information suppressed. Either way works but the second
will reveal duplicates to you more clearly, when they exist.

This is the final example; it illustrates a type difference which you will run into and will,
almost without exception, NOT include in your new DSDT. You will note that the
changed line contains an address and that this address is the only difference in the line.
Most often, this is the result of different machines and or/devices included with those
machines. This is why you really want to start with your vanilla DSDT source (.dsl) and
add the changes you need instead of just installing a binary (.aml) from another person.

It is likely that blindly including this change in your DSDT would result in a Kernel
Panic quite possibly rendering your MAC OS useless until corrected. Should this occur,
boot into Windows and then back into MAC OS while overriding your DSDT with the
boot parm DSDT=/Extra/xxxx.aml and then back out the change immediately.

While unlikely, it is actually possible to damage your machine via improper DSDT edits,
a power anomaly, for example, so these edits should not be taken lightly.

Well that is all for now. I hope you learned a little and make speedy progress toward
that perfect Hackint0sh desktop or laptop.

Good luck.

Steve

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

