
OpenCore

Reference Manual (0.0.3
:::
.4)

[2019.07.27]

Copyright ©2018-2019 vit9696

Contents

1 Introduction 2
1.1 Known defects . 2

2 Generic Terms 3
1.1

::::::
Generic

::::::
Terms . 3

2 Overview
::::::::::::::
Configuration 4

2.1 Configuration Terms . 4
2.2 Configuration Processing . 4
2.3 Configuration Structure . 5

3
::::::
Setup 6
3.1 Directory Structure . 6
3.2 Installation and Upgrade . 7
3.3 Contribution . 7

4 ACPI 9
4.1 Introduction . 9
4.2 Properties . 9
4.3 Add Properties . 9
4.6 Quirks Properties . 11
6.4 Block Properties . 15
6.5 Emulate Properties . 15
6.6 Patch Properties . 15

7 Misc 19
7.1 Introduction . 19
7.2 Properties . 19
7.3 Boot Properties . 19
7.5 Security Properties . 22

8 NVRAM 25
8.1 Introduction . 25
8.2 Properties . 25

10 UEFI 36
10.1 Introduction . 36
10.2 Properties . 36
10.3 Protocols Properties . 37
10.4 Quirks Properties . 37

11 Troubleshooting 40
11.1 Windows support . 40
11.2

:::::::::
Debugging . 41

11.3 Tips and Tricks . 41

1

1 Introduction
This document provides information on OpenCore user configuration file format used to setup the correct functioning
of macOS operating system.

1.1 Known defects
For OpenCore issues please refer to Acidanthera Bugtracker.

2

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker

2 Generic Terms

1.1
:::::::::
Generic

::::::::
Terms

• plist — Subset of ASCII Property List format written in XML, also know as XML plist format version
1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

• plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

• plist object — definite realisation of plist type, which may be interpreted as value.

• plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

• plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

• plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

• plist string — printable 7-bit ASCII string, conforms to string.

• plist data — base64-encoded blob, conforms to data.

• plist date — ISO-8601 date, conforms to date, unsupported.

• plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

• plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

• plist real — floating point number, conforms to real, unsupported.

• plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

3

2 Overview
::::::::::::::::::::
Configuration

2.1 Configuration Terms
• OC config — OpenCore Configuration file in plist format named config.plist. It has to provide extensible

way to configure OpenCore and is structured to be separated into multiple named sections situated in the root
plist dictionary. These sections are permitted to have plist array or plist dictionary types and are
described in corresponding sections of this document.

• valid key — plist key object of OC config described in this document or its future revisions. Besides explicitly
described valid keys, keys starting with # symbol (e.g. #Hello) are also considered valid keys and behave as
comments, effectively discarding their value, which is still required to be a valid plist object. All other plist
keys are not valid, and their presence yields to undefined behaviour.

• valid value — valid plist object of OC config described in this document that matches all the additional
requirements in specific plist object description if any.

• invalid value — valid plist object of OC config described in this document that is of other plist type,
does not conform to additional requirements found in specific plist object description (e.g. value range), or
missing from the corresponding collection. Invalid value is read with or without an error message as any
possible value of this plist object in an undetermined manner (i.e. the values may not be same across the
reboots). Whilst reading an invalid value is equivalent to reading certain defined valid value, applying
incompatible value to the host system may yield to undefined behaviour.

• optional value — valid value of OC config described in this document that reads in a certain defined manner
provided in specific plist object description (instead of invalid value) when not present in OC config. All
other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is
required to be present and reads to invalid value if missing.

• fatal behaviour — behaviour leading to boot termination. Implementation must stop the boot process from
going any further until next host system boot. It is allowed but not required to perform cold reboot or show any
warning message.

• undefined behaviour — behaviour not prescribed by this document. Implementation is allowed to take any
measures including but not limited to fatal behaviour, assuming any states or values, or ignoring, unless these
measures negatively affect system security in general.

2.2 Configuration Processing
OC config is guaranteed to be processed at least once if it was found. Depending on OpenCore bootstrapping
mechanism multiple OC config files may lead to reading any of them. No OC Config may be present on disk, in which
case all the values read follow the rules of invalid value and optional value.

OC config has size, nesting, and key amount limitations. OC config size does not exceed 16 MBs. OC config has no
more than 8 nesting levels. OC config has up to 16384 XML nodes (i.e. one plist dictionary item is counted as a
pair of nodes) within each plist object.

Reading malformed OC config file leads to undefined behaviour. Examples of malformed OC config cover at least
the following cases:

• files non-conformant to plist DTD
• files with unsupported or non-conformant plist objects found in this document
• files violating size, nesting, and key amount limitations

It is recommended but not required to abort loading malformed OC config and continue as if no OC config was
present. For forward compatibility it is recommended but not required for the implementation to warn about the use of
invalid values. Recommended practice of interpreting invalid values is to conform to the following convention
where applicable:

Type Value
plist string Empty string (<string></string>)
plist data Empty data (<data></data>)

4

Type Value
plist integer 0 (<integer>0</integer>)
plist boolean False (<false/>)
plist tristate False (<false/>)

2.3 Configuration Structure
OC config is separated into following sections, which are described in separate sections of this document. By default it
is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In
general the configuration is written idiomatically to group similar actions in subsections:

• Add provides support for data addition.
• Block provides support for data removal or ignorance.
• Patch provides support for data modification.
• Quirks provides support for specific hacks.

Root configuration entries consist of the following:

• ACPI
• DeviceProperties
• Kernel
• Misc
• NVRAM
• PlatformInfo
• UEFI

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons.
This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

5

3
::::::::
Setup

3.1 Directory Structure

ESP

EFI

BOOT

BOOTx64.efi

OC

ACPI

DSDT.aml

SSDT-1.aml

MYTABLE.aml

Drivers

MyDriver.efi

OtherDriver.efi

Kexts

MyKext.kext

OtherKext.kext

Tools

Tool.efi

OpenCore.efi

vault.plist

config.plist

vault.sig

nvram.plist

opencore-YYYY-MM-DD-HHMMSS.txt

::::::
Figure

::
1.

:::::::::
Directory

:::::::::
Structure

:

When directory boot is used the directory structure used should follow the description on Directory Structure figure.
Available entries include:

• BOOTx64.efi
Initial booter, which loads OpenCore.efi unless it was already started as a driver.

• ACPI
Directory used for storing supplemental ACPI information for ACPI section.

• Drivers
Directory used for storing supplemental UEFI drivers for UEFI section.

• Kexts
Directory used for storing supplemental kernel information for Kernel section.

• Tools
Directory used for storing supplemental tools.

• OpenCore.efi

6

Main booter driver responsible for operating system loading.
• vault.plist

Hashes for all files potentially loadable by OC Config.
• config.plist

OC Config.
• vault.sig

Signature for vault.plist.
• nvram.plist

OpenCore variable import file.
• opencore

::::::::::::::::::::::::::::
opencore-YYYY-MM-DD-HHMMSS.log

:::
txt

OpenCore log file.

Figure 1. Directory Structure

3.2 Installation and Upgrade
To install OpenCore reflect the Configuration Structure described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information in regards to external resources
like ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore
repository. Vaulting information is provided in Security Properties section of this document.

OC config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. DuetPkg is one of the known UEFI
environment providers for legacy systems. To run OpenCore on such a legacy system you can install DuetPkg with a
dedicated tool: BootInstall.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications
across all published updates.

3.3 Contribution
OpenCore can be compiled as an ordinary EDK II. Since UDK development was abandoned by TianoCore, OpenCore
requires the use of EDK II Stable. Currently supported EDK II release (potentially with patches enhancing the
experience) is hosted in acidanthera/audk.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow EDK II C Codestyle.

Required external package dependencies include EfiPkg, MacInfoPkg, and OcSupportPkg.

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:
git clone https://github.com/acidanthera/audk UDK
cd UDK
git clone https://github.com/acidanthera/EfiPkg
git clone https://github.com/acidanthera/MacInfoPkg
git clone https://github.com/acidanthera/OcSupportPkg
git clone https://github.com/acidanthera/OpenCorePkg
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

NOOPT or DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level
debugging with GDB or IDA Pro is also available. For GDB check page. For IDA Pro you will need IDA Pro 7.3 or
newer.

7

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/BootInstall
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/raw/master/external/mtoc-mac64.zip

4 ACPI

4.1 Introduction
ACPI (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware.
ACPI specification defines the standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g. _DSM, _PWR

:::
PRW)

for implementation. Modern hardware needs little changes to maintain ACPI compatibility, yet some of those are
provided as a part of OpenCore.

To compile and disassemble ACPI tables iASL compiler can be used developed by ACPICA. GUI front-end to iASL
compiler can be downloaded from Acidanthera/MaciASL.

4.2 Properties
1. Add

Type: plist array
Failsafe: Empty
Description: Load selected tables from OC/ACPI directory.

Designed to be filled with plist dict values, describing each block entry. See Add Properties section below.

2. Block
Type: plist array
Failsafe: Empty
Description: Remove selected tables from ACPI stack.

Designed to be filled with plist dict values, describing each block entry. See Block Properties section below.

3. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See Patch Properties section
below.

4. Quirks
Type: plist dict
Description: Apply individual ACPI quirks described in Quirks Properties section below.

4.3 Add Properties
1. Comment

Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

2. Enabled
Type: plist boolean
Failsafe: false
Description: This ACPI table will not be added unless set to true.

3. Path
Type: plist string
Failsafe: Empty string
Description: File paths meant to be loaded as ACPI tables. Example values include DSDT.aml, SubDir/SSDT-8.aml,
SSDT-USBX.aml, etc.

ACPI table load order follows the item order in the array. All ACPI tables load from OC/ACPI directory.

Note: All tables but tables with DSDT table identifier (determined by parsing data not by filename) insert new
tables into ACPI stack. DSDT, unlike the rest, performs replacement of DSDT table.

9

https://uefi.org/specifications
https://github.com/acpica/acpica
https://www.acpica.org
https://github.com/acidanthera/MaciASL/releases

6. Mask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

7. OemTableId
Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

8. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

9. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

10. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

11. TableLength
Type: plist integer
Failsafe: 0
Description: Match table size to be equal to this value unless 0.

12. TableSignature
Type:
textttplist data, 4 bytes
Failsafe: All zero
Description: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

• Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and EC0), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much
safer to rename devices at I/O Registry level, as done by WhateverGreen.

• Avoid patching _OSI to support a higher level of feature sets unless absolutely required. Commonly this enables a
number of hacks on APTIO firmwares, which result in the need to add more patches. Modern firmwares generally
do not need it at all, and those that do are fine with much smaller patches.

• Try to avoid hacky changes like renaming _PWR
:::
PRW or _DSM whenever possible.

Several cases, where patching actually does make sense, include:

• Refreshing HPET (or another device) method header to avoid compatibility checks by _OSI on legacy hardware.
_STA method with if ((OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return 0xF by replacing A0 10 93 4F 53 46 4C 00 with A4 0A 0F A3 A3 A3 A3 A3.

• To provide custom method implementation with in an SSDT, for instance, to report functional key presses on a
laptop, the original method can be replaced with a dummy name by patching _Q11 with XQ11.

Tianocore AcpiAml.h source file may help understanding ACPI opcodes.

4.6 Quirks Properties
1. FadtEnableReset

Type: plist boolean

11

https://github.com/acidanthera/WhateverGreen
https://github.com/tianocore/edk2/blob/UDK2018/MdePkg/Include/IndustryStandard/AcpiAml.h

Failsafe: Empty string
Description: Kext executable path relative to bundle (e.g. Contents/MacOS/Lilu).

5. MatchKernel
Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

6. PlistPath
Type: plist string
Failsafe: Empty string
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

6.4 Block Properties
1. Comment

Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

2. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel driver will not be blocked unless set to true.

3. Identifier
Type: plist string
Failsafe: Empty string
Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

4. MatchKernel
Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

6.5 Emulate Properties
1. Cpuid1Data

Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values in Little Endian order to replace CPUID (1) call in XNU
kernel.

2. Cpuid1Mask
Type: plist data, 16 bytes
Failsafe: All zero
Description: Bit mask of active bits in Cpuid1Data. When each Cpuid1Mask

::
bit

:
is set to 0, the original CPU

bit is used, otherwise
:::
set

::::
bits

::::
take

:::
the

:::::
value

:::
of

:::::::::::
Cpuid1Data.

6.6 Patch Properties
1. Base

Type: plist string
Failsafe: Empty string
Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to empty string to be ignored.

2. Comment
Type: plist string

15

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Note: This option should avoided whenever possible. Modern firmwares provide CFG Lock setting, disabling
which is much cleaner. More details about the issue can be found in VerifyMsrE2 notes.

2. AppleXcpmCfgLock
Type: plist boolean
Failsafe: false
Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should avoided whenever possible. Modern firmwares provide CFG Lock setting, disabling
which is much cleaner. More details about the issue can be found in VerifyMsrE2 notes.

3. AppleXcpmExtraMsrs
Type: plist boolean
Failsafe: false
Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-X, and similar
CPUs. More details on the XCPM patches are outlined in acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

4. CustomSMBIOSGuid
Type: plist boolean
Failsafe: false
Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

5. DisableIoMapper
Type: plist boolean
Failsafe: false
Description: Disables IOMapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to dropping DMAR ACPI table and disabling VT-d in firmware
preferences, which does not break VT-d support in other systems in case they need it.

6. ExternalDiskIcons
Type: plist boolean
Failsafe: false
Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should avoided whenever possible. Modern firmwares usually have compatible AHCI controllers.

7. LapicKernelPanic
Type: plist boolean
Failsafe: false
Description: Disables kernel panic on LAPIC interrupts.

8. PanicNoKextDump
Type: plist boolean
Failsafe: false
Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

9. ThirdPartyTrim
Type: plist boolean
Failsafe: false
Description: Patch IOAHCIBlockStorage.kext to force TRIM command support on AHCI SSDs.

Note: This option should avoided whenever possible. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce.

17

https://github.com/acidanthera/AppleSupportPkg#verifymsre2
https://github.com/acidanthera/AppleSupportPkg#verifymsre2
https://github.com/acidanthera/bugtracker/issues/365

7 Misc

7.1 Introduction
This section contains miscellaneous configuration entries for OpenCore behaviour that does not go to any other sections

7.2 Properties
1. Boot

Type: plist dict
Description: Apply boot configuration described in Boot Properties section below.

2. Debug
Type: plist dict
Description: Apply debug configuration described in Debug Properties section below.

3. Security
Type: plist dict
Description: Apply security configuration described in Security Properties section below.

4. Tools
Type: plist array
Description: Add new entries to boot picker.

Designed to be filled with plist dict values, describing each block entry. See Tools Properties section below.

Note: Select tools, for example, UEFI Shell or NVRAM cleaning UEFI Shell
::
or

:
CleanNvram are very dangerous

and MUST NOT appear in production configurations, especially in vaulted ones and protected with secure
boot, as they may be used to easily bypass secure boot chain.

7.3 Boot Properties
1. ConsoleMode

Type: plist string
Failsafe: Empty string
Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string. Set to empty
string not to change console mode. Set to Max to try to use largest available console mode.

2. ConsoleBehaviourOs
Type: plist string
Failsafe: Empty string
Description: Set console control behaviour upon operating system load.

Console control is a legacy protocol used for switching between text and graphics screen output. Some firmwares
do not provide it, yet select operating systems require its presence, which is what ConsoleControl UEFI protocol
is for.

When console control is available, OpenCore can be made console control aware, and and set different modes for
the operating system booter (ConsoleBehaviourOs), which normally runs in graphics mode, and its own user
interface (ConsoleBehaviourUi), which normally runs in text mode. Possible behaviours, set as values of these
options, include:

• Empty string — Do not modify console control mode.
• Text — Switch to text mode.
• Graphics — Switch to graphics mode.
• ForceText — Switch to text mode and preserve it (requires ConsoleControl).
• ForceGraphics — Switch to graphics mode and preserve it (require ConsoleControl).

Hints:

• Unless empty works, firstly try to set ConsoleBehaviourOs to Graphics and ConsoleBehaviourUi to Text.
• On APTIO IV (Haswell and earlier) it is usually enough to have ConsoleBehaviourOs set to Graphics and

ConsoleBehaviourUi set to ForceText to avoid visual glitches.

19

https://github.com/acidanthera/OpenCoreShell
https://github.com/acidanthera/AppleSupportPkg#cleannvram

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore
:::::::::::::::::::::::::::
opencore-YYYY-MM-DD-HHMMSS.log

:::
txt at EFI volume root with

log contents
:::
(the

::::::
upper

::::
case

:::::
letter

:::::::::
sequence

::
is

:::::::
replaced

:::::
with

::::
date

::::
and

:::::
time

::::
from

::::
the

::::::::
firmware). Please be warned

that some file system drivers present in firmwares are not reliable, and may corrupt data when writing files through
UEFI. Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog
is set to true when you use a slow drive.

7.5 Security Properties
1. ExposeSensitiveData

Type: plist integer
Failsafe: 2
Description: Sensitive data exposure bitmask (sum) to operating system.

• 0x01 — Expose printable booter path as an UEFI variable.
• 0x02 — Expose OpenCore version as an UEFI variable.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([^,]*\),.*/\1/'); \
if ["$u" != ""]; then sudo diskutil mount $u ; fi

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version

2. HaltLevel
Type: plist integer, 64 bit
Failsafe: 0x80000000 (DEBUG_ERROR)
Description: EDK II debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

3. RequireSignature
Type: plist boolean
Failsafe: true
Description: Require vault.sig signature file for vault.plist in OC directory.

This file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The signature
is verified against the public key embedded into OpenCore.efi.

To embed the public key you should do either of the following:

• Provide public key during the OpenCore.efi compilation in OpenCoreVault.c file.
• Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN OC VAULT= and ==END

OC VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public
key from X.509 certificate or from PEM file use RsaTool.

Note: vault.sig is used regardless of this option when public key is embedded into OpenCore.efi. Setting it
to true will only ensure configuration sanity, and abort the boot process when public key is not set but was
supposed to be used for verification.

4. RequireVault
Type: plist boolean

22

https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c
https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/CreateVault

8 NVRAM

8.1 Introduction
Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID, representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
• 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
• 8BE4DF61-93CA-11D2-AA0D-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)
• 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Please
ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

8.2 Properties
1. Add

Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present and not blocked. To overwrite a variable add it to Block section. This
approach enables to provide default values till the operating system takes the lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. Block
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

• Version — plist integer, file version, must be set to 1.
• Add — plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to Block (and Add) phases, and will not overwrite any existing variable. Variables
allowed to be set must be specified in LegacySchema. Third-party scripts may be used to create nvram.plist
file. Example

:::
An

::::::::
example

::
of

:::::
such

:::::
script

:
can be found in Tools

:::::::::
Utilities. The use of third-party scripts may

require ExposeSensitiveData set to 0x3 to provide boot-path variable with OpenCore EFI partition UUID.

WARNING: This feature is very dangerous as it passes unprotected data to your firmware variable services.
Use it only when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacySchema
Type: plist dict
Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

You can use * value to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

25

https://en.wikipedia.org/wiki/Universally_unique_identifier

10 UEFI

10.1 Introduction
UEFI (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITool and supplementary
utilities can be used.

10.2 Properties
1. ConnectDrivers

Type: plist boolean
Failsafe: false
Description: Perform UEFI controller connection after driver loading. This option is useful for loading filesystem
drivers, which usually follow UEFI driver model, and may not start by themselves. While effective, this option is
not necessary with e.g. APFS loader driver, and may slightly slowdown the boot.

2. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from OC/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers. Depending on the firmware a
different set of drivers may be required. Loading an incompatible driver may lead your system to unbootable
state or even cause permanent firmware damage. Some of the known drivers include:

• ApfsDriverLoader — APFS file system bootstrap driver adding the support of embedded APFS drivers in
bootable APFS containers in UEFI firmwares.

• AppleUiSupport — Apple-specific user interface support driver. This driver brings the support for FileVault
2 GUI, hotkey parsing (shift, cmd+v, etc.), language collation support, and certain other features important
for normal macOS functioning. For hotkey support AppleKeyMapAggregator-compatible driver is required.

• AppleGenericInput — user input driver adding the support of AppleKeyMapAggregator protocols on top
of different UEFI input protocols. Additionally resolves mouse input issues on select firmwares. This is an
alternative to UsbKbDxe, which may work better or worse depending on the firmware.

• AptioMemoryFix — a set of quirks for various firmwares. While it primarily targets APTIO firmwares, other
firmwares may be compatible as well. Among the resolved issues are hibernation support, KASLR, Lilu
NVRAM security enhancements, NVRAM, and UEFI Boot entry preservation.

• EmuVariableRuntimeDxe — NVRAM emulation driver from MdeModulePkg. NVRAM is supported by most
modern firmwares. For firmwares with macOS incompatible NVRAM implementation an emulated driver
may be used. This driver will not preserve NVRAM contents across the reboots.

• EnglishDxe — Unicode collation driver from MdeModulePkg. This driver is a lightweight alternative to
AppleUiSupport, which contains no Apple-specific code, and only provides unicode collation support. The
driver is not recommended for use on any hardware but few original Macs.

• EnhancedFatDxe — FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares,
and cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT support
implementation, which leads to corrupted filesystems on write attempt. Embedding this driver within the
firmware may be required in case writing to EFI partition is needed during the boot process.

• NvmExpressDxe — NVMe support driver from MdeModulePkg. This driver is included in most firmwares
starting with Broadwell generation. For Haswell and earlier embedding it within the firmware may be more
favourable in case a NVMe SSD drive is installed.

• UsbKbDxe — USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a
custom USB keyboard driver implementation. This is an alternative to AptioInputFix, which may work
better or worse depending on the firmware.

• VirtualSmc — UEFI SMC driver, required for proper FileVault 2 functionality and potentially other macOS
specifics. An alternative, named SMCHelper, is not compatible with VirtualSmc and OpenCore, which
is unaware of its specific interfaces. In case FakeSMC kernel extension is used, manual NVRAM variable
addition may be needed and VirtualSmc driver should still be used.

• VBoxHfs — HFS file system driver with bless support. This driver is an alternative to a closed source

36

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AptioFixPkg
https://github.com/tianocore/edk2/tree/UDK2018
https://github.com/tianocore/edk2/tree/UDK2018
https://github.com/tianocore/edk2/tree/UDK2018
https://github.com/tianocore/edk2/tree/UDK2018
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/VirtualSMC
https://github.com/acidanthera/AppleSupportPkg

HFSPlus driver commonly found in Apple firmwares. While it is feature complete, it is approximately 3 times
slower and is yet to undergo a security audit.

• XhciDxe — XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it may be used to
support external USB 3.0 PCI cards.

To compile the drivers from TianoCore UDK use the same command you do normally use for OpenCore compilation,
but choose a corresponding package:

git clone https://github.com/tianocore/edk2 -b UDK2018 UDK
cd UDK
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc
build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

3. Protocols
Type: plist dict
Failsafe: None
Description: Force builtin versions of select protocols described in Protocols Properties section below.

Note: all protocol instances are installed prior to driver loading.

4. Quirks
Type: plist dict
Failsafe: None
Description: Apply individual firmware quirks described in Quirks Properties section below.

10.3 Protocols Properties
1. AppleBootPolicy

Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

2. ConsoleControl
Type: plist boolean
Failsafe: false
Description: Replaces Console Control protocol with a builtin version.

macOS bootloader requires console control protocol for text output, which some firmwares miss. This option
is required to be set when the protocol is already available in the firmware, and other console control options
are used, such as IgnoreTextInGraphics, SanitiseClearScreen, and sometimes ConsoleBehaviourOs with
ConsoleBehaviourUi).

3. DataHub
Type: plist boolean
Failsafe: false
Description: Reinstalls Data Hub protocol with a builtin version. This will drop all previous properties if the
protocol was already installed.

4. DeviceProperties
Type: plist boolean
Failsafe: false
Description: Reinstalls Device Property protocol with a builtin version. This will drop all previous properties if
it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

10.4 Quirks Properties
1.

:::::::::::::::
AvoidHighAlloc
:::::
Type

:
:
::::::
plist

::::::::
boolean

37

https://github.com/tianocore/edk2/tree/UDK2018

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

::::::::
Advises

:::::::::
allocators

::
to

:::::
avoid

::::::::::
allocations

::::::
above

::::
first

::
4
::::
GBs

:::
of

::::::
RAM.

::::
This

::
is

:
a
:::::::::::
workaround

:::
for

:::::
select

::::::
board

::::::::::
firmwares,

::::::
namely

::::::::::::
GA-Z77P-D3

:::::
(rev.

:::::
1.1),

::::::
failing

::
to

::::::::
properly

::::::
access

::::::
higher

:::::::
memory

::
in

::::::
UEFI

:::::
Boot

::::::::
Services.

::::
Not

::::::::::::
recommended

::::::
unless

::::::::
required

:::
for

::::::::
booting.

::::
May

:::::
cause

::::::::
recovery

:::::
boot

:::::::
failures

::
on

::::::::::
unaffected

:::::::
boards.

:

2. ExitBootServicesDelay
Type: plist integer
Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device" message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. It seems that for some reason they execute code
in parallel to EXIT_BOOT_SERVICES, which results in SATA controller being inaccessible from macOS. A better
approach should be found in some future. Expect 3-5 seconds to be enough in case the quirk is needed.

3. IgnoreInvalidFlexRatio
Type: plist boolean
Failsafe: false
Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX_RATIO (0x194) MSR
register. These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

4. IgnoreTextInGraphics
Type: plist boolean
Failsafe: false
Description: Select firmwares output text onscreen in both graphics and text mode. This is normally unexpected,
because random text may appear over graphical images and cause UI corruption. Setting this option to true will
discard all text output when console control is in mode different from Text.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required. This option may hide onscreen error messages. ConsoleControl may need to be set to
true for this to work.

5. ProvideConsoleGop
Type: plist boolean
Failsafe: false
Description: macOS bootloader requires GOP (Graphics Output Protocol) to be present on console handle.
This option will install it if missing.

Note: Some drivers, like AptioMemoryFix, may provide equivalent functionality. These drivers are not guaranteed
to adhere to the same logic, and if a quirk is necessary, this option is preferred.

6. ReleaseUsbOwnership
Type: plist boolean
Failsafe: false
Description: Attempt to detach USB controller ownership from the firmware driver. While most firmwares
manage to properly do that, or at least have an option for, select firmwares do not. As a result, operating system
may freeze upon boot. Not recommended unless required.

7. RequestBootVarRouting
Type: plist boolean
Failsafe: false
Description: Request NVRAM driver (or AptioMemoryFix) to redirect Boot prefixed variables from EFI_GLOBAL_VARIABLE_GUID
to OC_VENDOR_VARIABLE_GUID.

This will set special boot-redirect variable, which a compatible driver will abide after booter start. The quirk
lets default boot entry preservation at times when firmwares delete incompatible boot entries.

8. SanitiseClearScreen
Type: plist boolean

38

11 Troubleshooting

11.1 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI
boot, like Windows 7, might work with some extra precautions. Things to keep in mind:

• MBR (Master Boot Record) installations are legacy and will not be supported.

• Installing Windows and macOS on the same drive is currently unsupported but will be addressed later.

• All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

• macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

• Windows may need to be reactivated. To avoid it consider leaving SystemUUID field empty, so that the original
firmware UUID is used. Be warned, on old firmwares it may be invalid, i.e. not random. In case you still have
issues, consider using HWID or KMS38 license. The nuances of Windows activation are out of the scope of this
document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases you will need Windows
support software from Boot Camp. For simplicity of the download process or when configuring an already installed
Windows version a third-party utility, Brigadier, can be used successfully. Note, that you may have to download and
install 7-Zip prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. In case you already have a previous
version of Boot Camp installed you will have to remove it first by running msiexec /x BootCamp.msi command.
BootCamp.msi file is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, sometimes you may have to
address some of them manually:

• To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.

• RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser (this one is usually not needed).

• To access Apple filesystems like HFS and APFS separate software may need to be installed. Some of the known
tools are: Apple HFS+ driver (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS, Paragon HFS+,
TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as this often leads
to irrecoverable data loss.

Why do I see Basic data partition in Boot Camp Control
::::::::
Startup

:::::
Disk

::::::::
control

:
panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows
separately you will have to relabel the partition manually. This can be done with many tools including open-source
gdisk utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldrive0
GPT fdisk (gdisk) version 1.0.4

Command (? for help): p
Disk \\.\physicaldrive0: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes
Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries

40

https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/page-4#post-24180079
http://www.catacombae.org/hfsexplorer
https://sourceforge.net/projects/gptfdisk

Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries
Total free space is 4029 sectors (2.0 MiB)

Number Start (sector) End (sector) Size Code Name
1 2048 1023999 499.0 MiB 2700 Basic data partition
2 1024000 1226751 99.0 MiB EF00 EFI system partition
3 1226752 1259519 16.0 MiB 0C01 Microsoft reserved ...
4 1259520 419428351 199.4 GiB 0700 Basic data partition

Command (? for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!

Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to \\.\physicaldrive0.
Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 3: Relabeling Windows volume

:::::
How

::
to

::::::::
choose

::::::::::
Windows

::::::::::::::
BOOTCAMP

::::::
with

:::::::
custom

:::::::
NTFS

:::::::::
drivers?

::::::::::
Third-party

:::::::
drivers

:::::::::
providing

:::::::
NTFS

::::::::
support,

:::::
such

::
as

:
NTFS-3G

:
,
::::::::
Paragon

:::::::
NTFS,

:::
or

:::::::
Tuxera

::::::
NTFS

::::::
break

:::::::
certain

::::::
macOS

::::::::::::
functionality,

:::::::::
including

:
Startup Disk

:::::::::
preference

:::::
pane

::::::::
normally

:::::
used

:::
for

:::::::::
operating

::::::
system

:::::::::
selection.

::::::
While

::::
the

::::::::::::
recommended

::::::
option

::::::::
remains

:::
not

:::
to

:::
use

:::::
such

:::::::
drivers

::
as

:::::
they

:::::::::
commonly

:::::::
corrupt

::::
the

::::::::::
filesystem,

::::
and

:::::
prefer

::::
the

::::::
driver

:::::::
bundled

:::::
with

:::::::
macOS

:::::
(with

:
optional write support

:
),
::::::
there

::::
still

::::
exist

::::::::::::::
vendor-specific

::::::::::::
workarounds

:::
for

:::::
their

:::::::::
products:

Tuxera
:
, Paragon

:
,
::::
etc.

:

11.2
::::::::::::
Debugging

::::::
Similar

:::
to

:::::
other

::::::::
projects

::::::::
working

::::
with

:::::::::
hardware

::::::::::
OpenCore

::::::::
supports

::::::::
auditing

::::
and

::::::::::
debugging.

:::::
The

::::
use

::
of

::::::
NOOPT

::
or

:::::
DEBUG

::::
build

::::::
modes

:::::::
instead

::
of
::::::::
RELEASE

:::
can

::::::::
produce

:
a
:::
lot

:::::
more

::::::
debug

:::::::
output.

:::::
With

::::::
NOOPT

:::::
source

:::::
level

:::::::::
debugging

:::::
with

:::::
GDB

::
or

::::
IDA

::::
Pro

::
is
::::
also

:::::::::
available.

::::
For

:::::
GDB

::::::
check OcSupport Debug

:::::
page.

::::
For

::::
IDA

::::
Pro

::::
you

:::
will

:::::
need

:::::
IDA

:::
Pro

::::
7.3

::
or

::::::
newer,

:::::
refer

::
to

:
Debugging the XNU Kernel with IDA Pro

::
for

:::::
more

:::::::
details.

:

::
To

:::::::
obtain

:::
the

::::
log

::::::
during

:::::
boot

::::
you

::::
can

:::::
make

::::
the

:::
use

:::
of

:::::
serial

:::::
port

::::::::::
debugging.

::::::
Serial

:::::
port

:::::::::
debugging

:::
is

:::::::
enabled

:::
in

::::::
Target

:
,
::::
e.g.

:::::
0xB

::
for

::::::::
onscreen

:::::
with

::::::
serial.

:::::::::::
OpenCore

::::
uses

:::::::
115200

:::::
baud

:::::
rate,

::
8

:::
data

:::::
bits,

:::
no

:::::::
parity,

::::
and

::
1

::::
stop

:::
bit.

::::
For

:::::::
macOS

:::::
your

:::::
best

::::::
choice

:::
are

:::::::::::::
CP2102-based

:::::::
UART

::::::::
devices.

::::::::
Connect

::::::::::::
motherboard

:::
TX

::
to

:::::
USB

::::::
UART

::::
GND

:
,

:::
and

::::::::::::
motherboard

::::
GND

::
to

:::::
USB

::::::
UART

:::
RX.

:::::
Use

:::::::
screen

:::::
utility

:::
to

:::
get

::::
the

:::::::
output,

::
or

:::::::::
download

:::::
GUI

::::::::
software,

:::::
such

:::
as

CoolTerm.
:

:::::::::
Remember

:::
to

::::::
enable

::::
COM

::::
port

::
in

:::::::::
firmware

::::::::
settings,

::::
and

:::::
never

::::
use

::::
USB

:::::::
cables

::::::
longer

::::
than

::
1
::::::
meter

:::
to

:::::
avoid

:::::::
output

::::::::::
corruption.

:::
To

:::::::::::
additionally

::::::
enable

:::::
XNU

::::::
kernel

:::::
serial

:::::::
output

::::
you

::::
will

::::
need

::::::::::
debug=0x8

::::
boot

:::::::::
argument.

:

11.3 Tips and Tricks
1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that:

• You have a DEBUG or NOOPT version of OpenCore.
• Logging is enabled (1) and shown onscreen (2): Misc → Debug → Target = 3.
• Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO

(0x00000040) levels are visible onscreen: Misc → Debug → DisplayLevel = 0x80000042.
• Critical error messages, like DEBUG_ERROR, stop booting: Misc → Security → HaltLevel = 0x80000000.

41

https://www.tuxera.com/community/open-source-ntfs-3g
https://support.apple.com/HT202796
http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x
https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq
https://kb.paragon-software.com/article/6604
https://github.com/acidanthera/OcSupportPkg/tree/master/Debug
https://www.hex-rays.com/products/ida/support/tutorials/index.shtml
https://freeware.the-meiers.org

• Watch Dog is disabled to prevent automatic reboot: Uefi
:::::
Misc → Quirks

::::::
Debug → DisableWatchDog =

true.
• Boot Picker (entry selector) is enabled: Misc → Boot → ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one.

2. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

3. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use Recovery tool from OcSupportPkg.

4.
:::::
Why

:::
do

:::::::
online

:::::::::
recovery

::::::::
images

:
(
::::::
*.dmg

:::
fail

:::
to

::::::
load?

::::
This

::::
may

:::
be

:::::::
caused

:::
by

:::::::
missing

::::::
HFS+

:::::::
driver,

::
as

:::
all

:::::::::
presently

::::::
known

::::::::
recovery

::::::::
volumes

:::::
have

::::::
HFS+

::::::::::
filesystem.

:::::::
Another

:::::
cause

:::::
may

::
be

::::::
buggy

::::::::
firmware

:::::::::
allocator,

::::::
which

:::
can

:::
be

::::::
worked

:::::::
around

:::::
with

:::::::::::::::
AvoidHighAlloc

:::::
UEFI

::::::
quirk.

5. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
in acidanthera/bugtracker#377

:
.
:

6.
:::::
Why

:::
do

:::::::::::::::
Find&Replace

::::::::
patches

::::::
must

::::::
equal

:::
in

::::::::
length?

:::
For

::::::::
machine

:::::
code

::::
(x86

::::::
code)

::
it

::
is

::::
not

:::::::
possible

:::
to

:::
do

::::
such

::::::::::::
replacements

::::
due

:::
to

:
relative addressing

:
.
::::
For

::::::
ACPI

::::
code

::::
this

::
is

:::::
risky,

::::
and

::
is

::::::::::
technically

:::::::::
equivalent

::
to

::::::
ACPI

:::::
table

::::::::::::
replacement,

::::
thus

:::
not

:::::::::::::
implemented.

:::::
More

::::::::
detailed

::::::::::
explanation

::::
can

:::
be

:::::
found

:::
on

:
AppleLife.ru.

42

https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/Recovery
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/bugtracker/issues/377
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Introduction
	Known defects

	
	Generic Terms
	DIFkeeppageDIFchangeDIFkeeppageDIFchangeDIFkeeppageDIFchangeConfigurationDIFkeeppageDIFchange
	Configuration Terms
	Configuration Processing
	Configuration Structure
	Setup
	Directory Structure
	Installation and Upgrade
	Contribution

	ACPI
	Introduction
	Properties
	Add Properties
	Quirks Properties

	Block Properties

	Emulate Properties
	Patch Properties
	Misc
	Introduction
	Properties
	Boot Properties
	Security Properties

	NVRAM
	Introduction
	Properties

	UEFI
	Introduction
	Properties
	Protocols Properties
	Quirks Properties

	Troubleshooting
	Windows support
	Debugging
	Tips and Tricks

